- 1. A unit used to express the exposure an individual receives is the:
 - a. Rem/hr
 - b. Roentgen
 - c. Curie
 - d Rad
- 2. The rem is a unit used to measure:
 - a. Radiation exposure
 - b. Radiation dose in terms of the amount of energy absorbed
 - c. Radiation dose in terms of the amount of the biological effect caused by the amount of energy absorbed
 - d. Radioactivity
- 3. Because of its low penetrating ability, the type of radiation which is usually only a hazard when inhaled or ingested is:
 - a. Alpha radiation
 - b. Beta radiation
 - c. Gamma radiation
 - d. Neutron radiation
- 4. Which of the following is an example of proper units for expressing exposure rate?
 - a. Hr/R
 - b. R/hr
 - c. Hr:R
 - d. r:hr
- 5. Cosmic radiation and radiation from terrestrial sources are examples of:
 - a. Natural background radiation
 - b. Natural man-made radiation
 - c. Industrial sources of radiation
 - d. Radioactive sources used in the medical field
- 6. An example of a man-made source of radiation is:
 - a. Terrestrial sources
 - b. Cosmic radiation
 - c. Diagnostic radiation
 - d. Potassium-40 in the human body
- 7. The three factors which are important in protecting individuals from radiation are:
 - a. Time, shielding, and dose rate
 - b. Dose rate, time, and gender
 - c. Time, shielding, and distance
 - d. Distance, time, and dose rate

- 8. Radiation received by the body over a short period is:
 - a. Chronic exposure
 - b. Sublethal exposure
 - c. Acute exposure
 - d. Supralethal exposure
- 9. Chronic exposures are:
 - a. Amounts of radiation received over a short period of time
 - b. Amounts of radiation received over a very long period of time
 - c. Acute exposures which affect only critical organs of the body
 - d. Acute exposures which affect all parts of the body
- 10. Radioactive decay is defined as:
 - a. The decrease in the amount of any radioactive material due to the spontaneous emission of nuclear radiation from the nucleus
 - b. The decomposition of radioactive atoms due to lengthy exposure to direct sunlight
 - c. The gradual decrease in the number of radioactive atoms in radioactive material due to spontaneous fission
 - d. The decline in the strength of a radioactive source due to the combined effects of time, distance, and shielding
- 11. The key elements of emergency management are , Response, Recovery and, Mitigation.
 - a. Removal
 - b. Preparedness
 - c. Measurement
 - d. Employment
- 12. The majority of radioactive material shipments are made in this type of packaging.
 - a. Type A
 - b. Type B
 - c. Limited Quantity
 - d. Industrial
- 13. Type B packages must be able to meet Type A requirements and also withstand the effects of ______ conditions?
 - a. Higher radiation
 - b. Accident
 - c. Higher weight
 - d. Faster transportation speed

- 14. The label required for radioactive material packages with a maximum dose rate of 200 mR/hr at the surface of the package is:
 - a. Radioactive Yellow-II
 - b. Radioactive Yellow III
 - c. Radioactive White I
- 15. The label required for radioactive material packages in excess of 50 mr/hr but less than 200 mr/hr is:
 - a. Radioactive Yellow-I
 - b. Radioactive Yellow-II
 - c. Radioactive Yellow-III
- 16. To determine the amount of radioactive material in a package of radioactive materials, you would look at the:
 - a. Placard
 - b. Label
 - c. Package type
- 17. The distinctive symbol used to identify radioactive materials is the:
 - a. Diamond
 - b. Tri-blade
 - c. White square
- 18. Unbroken radioactive material packages never have a surface radiation dose above this level:
 - a. 50 mR/hr
 - b. 100 mR/hr
 - c. 500 mR/hr
 - d. 1,000 mR/hr
- 19. A member of the public should give lifesaving first aid to injured victims of a radiological transportation accident:
 - a. Without delay out of concern for radiological hazards
 - b. After verifying that no radioactive material packages have broken open
 - c. After isolating the area
 - d. Immediately after notifying the appropriate authorities
- 20. In the United States, serious radiation exposures:
 - a. Have not resulted from radiological transportation accidents due largely to the nature of the material transported and the use of appropriate protective packaging
 - b. Have resulted from improper labeling of radioactive material shipments
 - c. Have resulted from improper packaging of radioactive material shipments
 - d. Frequently result from radioactive transportation accidents due to the large number of such shipments

21. In every n	nuclear power plant that generates electricity, the following co	omponents are present:
a. He	at source, steam generator, cooling tower	
b. He	at source, turbine electricity generator, and pump	
c. Tui	rbine electricity generator, pump, cooling tower	
d. Pui	mp, steam generator, cooling tower	
22. A chain re	eaction results when a uranium atom is struck by a/an	released by a nearb
	n undergoing fission.	
	ectron	
b. Pro		
d. Ne	mma ray eutron	
	main barriers in a nuclear power plant to prevent release of fi	ssion products are the fuel
	tor vessel, and the	
	condary coolant system	
	ontainment building	
	ndensor	
d. Co	entrol rods	
24. To preven	nt fuel damage, decay heat must be removed from the reactor of	core:
a. Un	til the reactor shuts down	
b. Aft	ter the reactor shuts down	
c. Un	til the primary coolant system is activated	
25. Control ro	ods are used in a reactor core to:	
a. Ab	sorb free neutrons	
b. Are	e a source of free neutrons which are used to cause fission	
c. End	case the nuclear fuel	
26. In a pressi	urized water- reactor the primary cooling water:	
a. Bo	ils in the core and is used to turn the turbine	
b. Eva	aporates to the atmosphere using a cooling tower	
c. Tra	ansfers its heat to the secondary cooling water in a steam gene	erator
27. A large m	nodern nuclear power plant has approximately fuel assemblies	in its core.
a. 100	\mathfrak{I}	
b. 50		
c. 200	\mathfrak{I}	
d. 500	0	

28. Nuclear power plant emergency	plans are required to incorp	porate actions for which of	of the following
types of radiological hazards?			

- a. Direct exposure to radiation from a plume of radioactive material
- b. Blast effects
- c. Fallout
- 29. In a , a major failure has occurred, but an immediate response by the public is not needed.
 - a. General Emergency
 - b. Site Area Emergency
 - c. Alert
 - d. Unusual Event
- 30. If evacuation is required following a nuclear power plant accident, it is recommended that individuals living anywhere closer than miles be evacuated.
 - a. 2 to 3
 - b. 3 to 5
 - c. 5 to 10
 - d. 15
- 31. A detonation of a nuclear explosive above 100,000 feet of altitude is called _____.
 - a. An air burst
 - b. A high-altitude burst
 - c. A sub-cosmic burst
 - d. A surface burst
- 32. Nuclear explosions can be of times more powerful than the largest conventional weapon.
 - a. Hundreds
 - b. Thousands
 - c. Millions
 - d. Billions
- 33. The total energy released in a nuclear explosion, is the explosions:
 - a. Thermal energy
 - b. Blast
 - c. Energy yield
 - d. Nuclear energy

- 34. The immediate destructive action of a nuclear explosion is caused by this.
 - a. Heat
 - b. Radiation
 - c. Shock
 - d. Dust
- 35. A nuclear explosion which releases energy equivalent to 7,000,000 tons of TNT:
 - a. Is called a 7 kiloton burst
 - b. Has an energy yield of 7 kilotons
 - c. Is called a 7 megaton burst
 - d. Has a thermal energy release of 7 million kilograms
- 36. Just as in an emergency resulting from a nuclear power accident, the three most important ways of reducing the radiation exposure from fallout from a nuclear weapon are:
 - a. Time, shelter, and gender
 - b. Dose rate, distance, and time
 - c. Dose rate, distance, and shielding
 - d. Time, distance, and shielding
- 37. Radioactive fallout makes the surface it comes into contact with radioactive. (True or False?)
 - a. True
 - b. False
- 38. Radiological survey instruments:
 - a. Will not be very reliable after a nuclear detonation because of weak batteries and no sure way of checking the strength of those batteries
 - b. Will give just an approximate answer which will need to be corrected using the "7: 10 Rule of Thumb"
 - c. Are the most accurate and reliable means of determining exposure levels
 - d. Will be very reliable following a nuclear detonation since they usually use AC line current
- 39. According to the "7:10 Rule of Thumb," if the exposure rate one hour after detonation of a nuclear weapon is 500 R/hr, the exposure rate approximately 14 days later (343 hours) will be approximately:
 - a. 50 R/hr
 - b. 5 R/hr
 - c. 0.5 R/hr
 - d. 0.05 R/hr
- 40. The 7:10 Rule of Thumb:
 - a. Is 100 percent accurate
 - b. Helps estimate future exposure levels
 - c. Is more reliable than radiological survey instrument readings
 - d. Is accurate to within +10 percent

- 41. Everyone is exposed to radiation on a continuing basis from either or sources.
 - a. Uranium, thorium
 - b. Radon, uranium
 - c. Natural, man-made
 - d. Terrestrial, extra-terrestrial
- 42. Radiation that individuals are exposed to on a continuing basis which is considered non life-threatening is also known as this kind of radiation?
 - a. Cosmic
 - b. Intrinsic
 - c. Background
 - d. Uneventful
- 43. Just under half of man's exposure to external natural radiation comes from?
 - a. Radon
 - b. Cosmic radiation
 - c. Rocks
 - d. Food
- 44. Radon dose comes primarily from its daughter products which are ?
 - a. Ingested
 - b. Counted
 - c. Inhaled
 - d. Touched
- 45. The two radionuclides which concentrate in seafood are:
 - a. Lead and mercury
 - b. Thorium and mercury
 - c. Lead and polonium
 - d. Polonium and mercury
- 46. By far, the radionuclide used in most nuclear medicine procedures is:
 - a. Carbon-14
 - b. Strontium-90
 - c. Technicium-99m
 - d. Cobalt-60

IS-3 RADIOLOGICAL EMERGENCY MANAGEMENT Final Exam

102011

47. Nuclear medicine techniques work through the detection of this kind of radiation, injected into the body by adding a radioisotope to a certain drug:

- a. Alpha particles
- b. X-rays
- c. Gamma-rays
- d. Neutrons

48. Cancerous tumor cells can be treated by high energy or

- a. Neutrons, alpha particles
- b. Neutrons, electrons
- c. Gamma rays, X-rays
- d. Gamma rays, neutrons
- 49. Most debris from a nuclear weapons test:
 - a. Fell immediately
 - b. Was pushed into the troposhere
 - c. Was pushed into the stratosphere
 - d. Disintegrated
- 50. Many smoke detectors contain:
 - a. Americium-241
 - b. Carbon-14
 - c. Strontium-90
 - d. Iodine